

Pathological overfitting in SAEs

200 models, random hyperparams

Enabling hyperparameter optimization in sequential autoencoders for spiking neural data Mohammad Reza Keshtkaran, Chethan Pandarinath

Georgia Tech and Emory University Email: mkeshtk@emory.edu

Two solutions to address pathological overfitting in SAEs

1- Coordinated dropout (CD)

CD forces the network to only model shared structure underlying the observations. CD first passes in a subset of samples at the input (by applying dropout). Next, to update network weights, CD only uses gradients calculated for reconstruction of the complementary subset of samples.

Simulation example, linear over-complete autoencoder:

CD is equivalent to preventing diagonal weights to be trained.

$\mathbf{Y} = \mathbf{W}_{\mathbf{p}}^{\mathrm{T}}\mathbf{Q}$	low-c high-d observ latent va	l data: /ation: riable:	$\begin{array}{l} Q \in \mathbb{R}^{mxn} \\ X \in \mathbb{R}^{oxn} \\ Z \in \mathbb{R}^{hxn} \end{array}$
X = Y + N whe	ere N ~ $N(0, \sigma)$		m < o ≤ h
<u>encoder</u>	<u>decoder</u>	<u>auto</u>	<u>-encoder</u>
$Z = W_1^T X$ latent variable	$\mathbf{X'} = \mathbf{W}_{2}\mathbf{Z}$ Reconstruction	X' =	$\underbrace{W_2 W_1^T X}_W$
Train loss: IIX-X	True	loss:	 Y-X' ²

2- Sample validation

never seen during training or evaluation.

Denoising autoencoders do not address overfitting in SAEs

Salt and Pepper 0 20% Φ O 2000 1600 2400 1200 Validation loss

Evaluate the network by how well it can predict the rates for the samples it has

Experimental setup - decoding arm velocity

HP optimization trains accurate models with 5-10x less data

HP optimization performed using Population based training (PBT)³ **Dataset 1: Curved reaching task**

Conclusions

- using standard validation loss.
- Lack of a reliable validation metric prevented HP optimization in SAEs.
- We developed two solutions "Coordinated dropout" and "Sample validation" to address pathological overfitting in SAEs and enable HP optimization.
- HP optimization led to accurate models while using 5-10-fold less training data.

References

arXiv preprint arXiv:1711.09846 (2017). program.

• SAEs are prone to a particular type of overfitting that cannot be detected through

Acknowledgements: This work was supported NSF NCS 1835364, and DARPA Intelligent Neural Interfaces

^[1] Pandarinath, Chethan, Daniel J. O'Shea, Jasmine Collins, et al. "Inferring Single-Trial Neural Population Dynamics Using Sequential Auto-Encoders." Nature Methods, 2018.

^[2] Sussillo, David, Rafal Jozefowicz, L. F. Abbott, and Chethan Pandarinath. "Lfads-latent factor analysis via dynamical systems." arXiv preprint arXiv:1608.06315 (2016).

^[3] Jaderberg, Max, Valentin Dalibard, Simon Osindero, et al. "Population based training of neural networks."