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Sequential autoencoder (SAE) for modeling neural dynamics

Pathological overfitting in SAEs Denoising autoencoders do not address overfitting in SAEs 

Two solutions to address pathological overfitting in SAEs

2- Sample validation

1- Coordinated dropout (CD)

HP optimization trains accurate models with 5-10x less data

Conclusions

References

Experimental setup - decoding arm velocity

Dataset 1: Curved reaching task

Two tasks:
1- Curved reaching
2- Random target

HP optimization performed using Population based training (PBT)3

Dataset 2: Random target task
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Evaluate the network by how well it can predict the rates for the samples it has 
never seen during training or evaluation.Simulation setup2
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Reconstruction

low-d data:
high-d observation:

latent variable:

decoder auto-encoder
X′ = W2
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CD is equivalent to preventing diagonal 
weights to be trained.

Simulation example, linear over-complete autoencoder:
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X = Y + N  where N ~ N(0, σ)

True loss: ||Y-X′||2Train loss: ||X-X′||2
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Main hyperparameters:
- KL penalies
- L2 penalies
- Dropout
- Learning rate

Maximize Evidence Lower Bound 
ELBO (L):

Reconstruction log-likelihood:

KL penalty:
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• SAEs are prone to a particular type of overfitting that cannot be detected through 
using standard validation loss.

• Lack of a reliable validation metric prevented HP optimization in SAEs.
• We developed two solutions “Coordinated dropout” and “Sample validation” to 

address pathological overfitting in SAEs and enable HP optimization.
• HP optimization led to accurate models while using 5-10-fold less training data.

CD forces the network to only model shared structure underlying the observa-
tions. CD first passes in a subset of samples at the input (by applying dropout). 
Next, to update network weights, CD only uses gradients calculated for recon-
struction of the complementary subset of samples.

Used synthetic data with ground truth to demonstrate pathological overfitting.

Tr
ue

 p
er

fo
rm

an
ce

1350 1850 2350
Standard validation loss

0
0.

2
0.

4
0.

6
0.

8
R2

18500.
7

0.
8

Tr
ue

 p
er

fo
rm

an
ce

1200 1600 2000 2400
Validation loss

0
0.

4
0.

8
R2

Zero Masking
0%
10%
30%
50%

Tr
ue

 p
er

fo
rm

an
ce

1200 1600 2000 2400
Validation loss

Salt and Pepper
0%
10%
20%
30%

Tr
ue

 p
er

fo
rm

an
ce

0
0.

4
0.

8

SAE Model: Latent factor analysis through dynamical systems (LFADS)1

Better m
odels

Overfit
tin

g

Better Loss

200 models, random hyperparams

spikes

True rate

Standard validation loss
1200 1600 2000 2400

Overfit Good fit Underfit

0
0.

2
0.

4
0.

6
0.

8
Tr

ue
 p

er
fo

rm
an

ce

Time

N
eu

ro
ns

Time

N
eu

ro
ns

Compare

ft Wrate

Wfac

rt

Initial state g0

time

time time

trials
ne

ur
on

s

ne
ur

on
s

ne
ur

on
s

5.4 1.3

1.2 0.9

1.7 1.1

... ...

µ σ

SAE

Neural spikes 
(point process)

Neural 
spikes

D
ec

od
in

g 
A

cc
ur

ac
y

Less training data

Typical data size 
in neuroscience

Time

N
eu

ro
ns

Maximize
Poisson  

likelihood

Record 
neural 
activity

Inferred 
rates

True hand position
Estimated hand 
position from 
neural activityDecode 

behavior

Decreasing data size Decreasing data size

Decreasing data sizeDecreasing data size

CD Off
CD On

Smoothing

SAE

Example rate for one neuron

Fixed HPs

HP-optimized
Decoded movements


